Roles of vascular endothelial growth factor receptor 3 signaling in differentiation of mouse embryonic stem cell-derived vascular progenitor cells into endothelial cells.

نویسندگان

  • Hiroyuki Suzuki
  • Tetsuro Watabe
  • Mitsuyasu Kato
  • Keiji Miyazawa
  • Kohei Miyazono
چکیده

Vascular endothelial growth factor receptor 2 (VEGFR2/Flk-1)-positive cells derived from embryonic stem (ES) cells serve as vascular progenitors, which differentiate into endothelial cells (ECs) in the presence of VEGF-A. VEGFR3/Flt-4 (fms-like tyrosine kinase 4) signaling is known to be important for the development of lymphatic endothelial cells (LECs). To elucidate the roles of VEGFR3 signaling in the differentiation of vascular progenitor cells into ECs, we introduced various types of VEGFR3 cDNAs into mouse ES cells. VEGF-C, a ligand for VEGFR2 and VEGFR3, stimulated the endothelial differentiation of the VEGFR2+ cells transfected with the VEGFR3 cDNA but not those transfected with kinase-negative mutants of VEGFR3. The VEGFR3-transfected ECs exhibited high expression levels of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), one of the markers of LECs, and showed efficient binding of hyaluronan. VEGF-C(C152S), which is able to activate VEGFR3 but not VEGFR2, failed to induce the endothelial differentiation of mock- and VEGFR3-transfected VEGFR2(+) cells, suggesting the essential role of VEGFR2 signaling for endothelial differentiation. Furthermore, kinase-negative mutants of VEGFR3 prevented the VEGF-C-mediated endothelial differentiation of the vascular progenitor cells. Thus, VEGFR2 signaling is required for the endothelial differentiation of mouse ES cells induced by VEGF-C, and VEGFR3 signaling may confer lymphatic endothelial-like phenotypes to ECs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A

Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...

متن کامل

Human Trophoblast Progenitor Cells Express and Release Angiogenic Factors

Trophoblast stem cells develop from polar trophoectoderm and give rise to the cells that generate the placenta. Trophoblast cells are responsible for the uterinal invasion and vascular remodeling during the implantation of the embryo. However this knowledge is not yet to be confirmed for trophoblast progenitor cells (TPCs). In this study, we aimed to demonstrate that human TPCs (hTPCs) express ...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 105 6  شماره 

صفحات  -

تاریخ انتشار 2005